	CONTENT	KEY/FUNDAMENTAL CONCEPTS	ASSESSMENT
Autumn Term	AS-Level - Trigonometry AS-Level - Algebra and functions AS-Level - Coordinate geometry AS-Level - Differentiation AS-Level - Exponentials and logs	Sine/Cosine rules Trig graphs and solving trig equations Trig identities Radians Small angle approximations Surds and Indices Quadratic functions Simultaneous equations Inequalities Polynomial division and Factor theorem Factor theorem Graphs incl transformations Binomial theorem and expansion Straight lines Circles Differentiate polynomials Use derivative to find gradient including stationary points Increasing/decreasing functions Differentiate from $1^{\text {st }}$ principles Definitions, graphs and laws of logarithms Solve equations Exponential growth and decay Curve fitting	Baseline assessment
		Half-term	
	AS-Level - Integration AS and A-Level - Vectors AS-Level - Mechanics AS-Level - Statistics Further Pure - Matrices AS and A-level - Proof	Integrate polynomials Evaluate definite integrals Integrate to find areas Use vectors in 2D and 3D Magnitude and direction of a vector Kinematics and travel graphs Constant acceleration formulae Calculus in kinematics Motion under gravity Forces and Newton's laws Connected particles Sampling Presenting data, including Scatter diagrams Averages and spread of data Matrix arithmetic Matrix transformations Determinant and inverse of 2×2 matrices Invariant lines and lines of invariant points Analytical proof Proof by exhaustion Proof by counter example Proof by contradiction	Mixed assessment
	Christmas Holiday		
Spring Term	A-Level - Differentiation A-Level - Integration AS-Level - Statistics	Differentiating parametric equations Implicit differentiation Integration by inspection Integration by substitution Integration by parts Integration involving natural logs Binomial distribution and hypothesis tests	Mixed assessment Further Mixed assessment

	A-Level - Mechanics Further Pure - Complex numbers AS-Level - Statistics	Hypothesis tests including PMCC Kinematics in 2 dimensions Inclined planes Friction Moments Projectiles Arithmetic with complex numbers Modulus-argument form Argand diagrams Loci in the complex plane Conditional probability Modelling with probability	
		Half-term	
	A-Level - Statistics A-Level - Trigonometry A-Level - Differentiation A-Level - Partial fractions A level - Integration A-Level - Sequences and series A-Level - Numerical methods	Normal distribution Reciprocal trig functions and identities Compound and double angle formulae $R \cos (x+a)$ and $R \sin (x+a)$ Differentiate trig functions Convex and concave functions Points of inflection Chain, product and quotient rules Connected rates of change Partial fractions Differential equations Iterative sequences and other sequences Arithmetic sequences and series Geometric sequences, series sum to infinity Change of sign and iterative methods Newton-Raphson Trapezium rule	Mixed Calculus assessment
		Easter Holiday	
	A-Level - Functions A-Level - Statistics Further Pure - Vectors Further Pure - Induction	Composite and inverse functions Modulus functions and equations Composite transformations Large data set Vector and Cartesian equation of a 3D line and equation of a plane Scalar product Intersection of planes Proof of sum of series and divisibility	Year 12 mocks
		Half-term	
Summer Term	Further Pure- Algebra and functions Further Pure - Series Further Pure - Maclaurin series Further Mechanics - Work, energy and power Further Pure - Further calculus	Roots of polynomials Transformed polynomials Sketching rational functions Inequalities of rational functions Series based on integers, squares and cubes Method of differences Maclaurin series Evaluate limits using Maclaurin l'Hôpital's rule Work done by a force Gravitational potential energy Conservation of energy problems Kinetic energy Hooke's Law Work done by a variable force Elastic potential energy Power Improper integrals Volumes of revolution Mean of a function	Functions assessment

Course Outline:

Year 13 Further Maths

	CONTENT	KEY/FUNDAMENTAL CONCEPTS	ASSESSMENT
Autumn Term	Further Pure - Matrices Further Pure - Vectors Further Statistics - Poisson Further Pure - Hyperbolic functions Further Pure - Conics Further Pure - Integration Further Pure - Further matrices Further Pure - Further vectors Further Mechanics - Dimensional analysis Further Pure - Numerical Methods	Determinant and inverse of 3×3 Row and column operations Vector product Intersection of and distance between lines Poisson distribution Poisson Hypothesis testing Definitions of hyperbolics Graphs of hyperbolics Differentiate and integrate hyperbolics Inverse hyperbolics incl domain and range Logarithmic form of inverse hyperbolics Integrate using hyperbolic substitutions Hyperbolic identities Parabolas, hyperbolas and ellipses Transformations of curves Partial fractions Inverse trigonometric functions Substitutions associated with inverse trigonometric functions Eigenvalues and eigenvectors Row and column operations Diagonal form Geometric interpretation of SEs Vector product Intersection of lines Distance between lines, points and planes Find dimensional quantities Check dimensional consistency Prediction of formulae Find powers in potential formulae Mid-ordinate rule Simpson's rule Euler's method and improved Euler's	Mixed assessment Further Complex numbers and Matrices assessment
	Half-term		
	Further Statistics - DRVs Further Statistics - CRVs Further Pure - Further algebra and functions Further Pure - Further calculus Further Mechanics - Momentum and collisions	Find averages and spread of DRVs Use probability density function Find averages and spread of CRVs Use distributions for part discrete and part continuous variables Sum of independent CRVs Cumulative distribution function Rectangular distribution Rational functions - linear Rational functions - quadratic Asymptotes Stationary points Arc length Surface area of revolution Reduction formulae Limits of improper integrals Conservation of momentum Coefficient of restitution and Newton's experimental law	Year 13 mocks

